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Abstract 
 
In this paper, the influence of two open cracks on the dynamic behavior of a double cracked simply supported beam 

is investigated both analytically and experimentally. The equation of motion is derived by using the Hamilton’s 
principle and analyzed by numerical method. The simply supported beam is modeled by the Euler-Bernoulli beam 
theory. The crack sections are represented by a local flexibility matrix connecting three undamaged beam segments. 
The influences of the crack depth and the position of each crack on the vibration mode and the natural frequencies of a 
simply supported beam are analytically clarified for the single and double cracked simply supported beam. The 
theoretical results are also validated by a comparison with experimental measurements. 
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1. Introduction 

The dynamic behavior of beam with the cracks is 
considerably important in many structural designs. 
When a structure is subjected to damage its dynamic 
response is varied due to the change of its mechanical 
characteristics. Chondros and Dimarogonas (1989, 
1998) studied the effect of the crack depth on the 
dynamic behavior of a cantilevered beam. They 
showed that the increase of the crack depth reduces 
the natural frequency of the beam. Also, they used 
energy method and a continuous cracked beam theory 
for analyzing the transverse vibration of cracked 
beam. Dado and Abuzeid (2003) studied the modeling 
and analysis algorithm for cracked Euler-Bernoulli 
beam by considering the coupling between the 
bending and axial modes of vibration. This algorithm 
is applied to the analysis of the vibration behavior of 
the cracked beam and particularly its natural fre-

quency and mode shapes under the effect of added 
mass and rotary inertia at the free end. Lin (2004) 
investigated the direct and inverse methods on the 
free vibration analysis of the simply supported beams 
with a crack. The method is based on modeling the 
beam by Timoshenko beam theory and presents the 
crack as a mass-less rotational spring. Liu et al. 
(2003) examined the suitability of using coupled res-
ponses to detect damage in thin-walled tubular 
structures. By coupled response they referred to the 
ability of a structural member with a circumferential 
crack to describe composite vibration modes (axial 
and bending) when excited purely laterally. Zheng 
and Fan (2003, 2003) studied the stability of a 
cracked Timoshenko beam column by modified Fou-
rier series. Also, they present simple tools for the 
vibration and stability analysis of cracked hollow-
sectional beams. Maiti et al. (2004) have shown the 
results of study on crack detection in pipes filled with 
fluid by the theoretical analysis and the experiment. 
Recently, Yoon and Son (2004) investigated the ef-
fects of the open crack and the moving mass on the 
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dynamic behavior of the simply supported pipe 
conveying fluid. They studied about the influences of 
the crack, the moving mass and its velocity, the 
velocity of fluid, and the coupling of these factors on 
the dynamic behavior of the Timoshenko beam. Most 
of the studies for crack detection were concentrated 
on the analysis of the effect of a single crack on the 
dynamics of a simple structure such as a shaft and a 
beam. In practice, it is sufficiently possible for the 
two or more cracks to exits on the structures. The 
dynamic behavior of a double-cracked beam and a 
rotor with two cracks were investigated by Ruotolo et 
al. (1996) and Shekar (1999), respectively. Lin et al. 
(2002) studied beam vibrations with an arbitrary 
number of double-side crack and single-side crack 
using the transfer matrix methods. Ostachowicz and 
Krawczuk (1991) investigated the influence of the 
position and the depth of two open cracks upon the 
fundamental frequency of the natural flexural vibra-
tions of a cantilever beam. To model the effect of the 
local stress in the crack, they introduced two different 
functions according to the symmetry of the crack. 
Shen and Pierre (1990) considered the same problem 
in case of the symmetric cracks. An equation of the 
bending motion for Euler-Bernoulli beam containing 
pairs of the symmetrical open cracks was derived by 
Christides and Barr (1984). The cracks were consi-
dered to be normal to the beam’s neutral axis and 
symmetrical about the plane of bending. Douka et al. 
(2004) studied about a method for determining the 
location and the depth of cracks in double-cracked 
beams. Li (2002) investigated the free vibration an-
alysis of a non-uniform beam with an arbitrary 
number of cracks and concentrated masses. 

In this study, the effects of each crack on the natural 
frequency of a simply supported double-cracked beam 
are investigated. That is, the influences of the crack 
depth and position of each crack were studied on the 
dynamic behavior of the simply supported beam 
system. The theoretical results are also validated by a 
comparison with experimental measurements in this 
study. The simply supported beam is modeled by the 
Euler-Bernoulli beam theory. The cracks are assumed 
to be always open during vibrations.  
 

2. Mathematical model  

The simply supported beam with double cracks is 
shown in Fig. 1, where L is the total length of the beam, 

 
(a) Double cracks 

 
(b) Beam segments connected by rotational springs 

Fig. 1. Geometry of a simply supported double-cracked beam. 

 

 
Fig. 2. Geometry of the cracked section of the beam. 
 

1cx  and 2cx  are the positions of each crack from the 
left-hand hinged end of the beam. In addi-tion, 

1RK  
and 2RK  are the bending stiffness of the first and 

second cracks, respectively. Figure 2 show the cross-
section of the cracked section, where a  is the 
maximum crack depth, b  and h  are the rectangular 
cross-section dimensions. Three equations of motion 
are derived respectively for the three parts of the 
beam separated by the cracked sections. 

 
2.1 Crack modeling 

Consider the bending vibrations of a uniform Euler-
Bernoulli beam in the x y−  plane, which is assumed 
to be a plane of symmetry for any cross-section. The 
crack is assumed to be always open. The additional 
strain energy due to the crack can be considered in the 
form of a flexibility coefficient expressed in terms of 
the stress intensity factor, which can be derived by 
Castigliano’s theorem in the linear elastic range. 
Therefore the local flexibility (Dimarogonas, 1996) in 
the presence of the width b  of a crack is defined by 
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where uijn and αn are the additional displacement 

due to a crack and the crack depth as shown in Fig. 2, 
respectively. Pi is the load in the same direction as the 
displacement and n (=1,2) represents the first crack 
and second crack, respectively. The strain energy 
density function J(αn) is 
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where * 2/(1 )pE E ν= −  for the plane strain and 

pν  

is Poisson’s ratio. ,I IIK K  and 
IIIK  are the stress 

intensity factors of the fracture mode for the opening, 
in-plane shear and our-of-shear mode, respectively.  

In Eq. (1), the matrix of local flexibility of a beam 
size depends on the number of the degrees of freedom 
being considered for the forces and moments of the 
coordinate system, the maximum being 6×6. In this 
paper, we considered only the bending vibration 
because the effect on dynamic behavior of the 
cracked beam of the local axial and coupled axial and 
bending is very small (Bamnios et al., 2001; Dado 
and Abuzeid, 2003). Therefore Eq. (2) can be re-
written as  
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The stress intensity factor for the fracture mode I 

due to moment M is given by  
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where 

2
n

n h
πας = . Therefore the relation of local 

flexibility and the bending stiffness for the beam due 
to the crack has the following form: 
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2.2 Energy of simply supported beam with double 
cracks 

Using the assumed mode method, the transverse 
displacement of a simply supported double-cracked 
beam can be assumed to be  
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where ( )( ) , 1j t

iq t e jω= = −  are generalized co-

ordinates which is time dependent, µ  is the total 
number of the generalized coordinates, and 

 ( )ik xφ  

are spatial mode functions of the segment k of a 
simply supported beam. In addition, ( 1, 2,3)k =  de-
notes the number of the segments, which are the parts 
of the beam separated by the cracked sections. 

 ( )ik xφ  can be described as follows: 
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where iλ  is the frequency parameter, which is 

easily calculated by using the frequency equation of a 
simply supported beam(Inman, 1994).  

In Eqs. (8)~(10), the constants 1 2 12,   , ,  A A A  can 
be found from the boundary conditions. The boun-
dary conditions of a simply supported beam are 
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The boundary conditions for the transverse de-

flection, bending moment, shear force and slope at the 
each crack are 
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where 

1 2,  R RK K  are the bending stiffness of the 

first and second cracks in Eq. (6), respectively. E is 
the modulus of elasticity of the beam and I is the 
moment of inertia of the beam cross-section. In Fig. 1, 
the kinetic and potential energy of the simply 
supported beam with the double cracks can be written 
as  
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where ( ⋅ ) denotes / t∂ ∂ , ( ' ) represents / x∂ ∂  and 
m is the mass per unit length of the beam.  

 
2.3 Equation of motion 

The equation of motion of a simply supported 
double-cracked beam is obtained by the application 
the Hamilton’s principle. The equation of motion can 
be matrix form as follow: 

 
Mq + Kq = 0   (16) 
 
where the matrices M  and K  are 
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By inserting boundary conditions Eqs.(11)~(13) 

into the Eqs. (8)~(10), 12 by 12 matrix equation is 
obtained. The natural frequencies of the double-
cracked beam can be obtained by imposing zero value 
on the determinant of this coefficient matrix. 
 

3. Experiments 

In order to validate the model presented in this 
study, natural frequencies of a simply supported beam 
with the double cracks are measured by experiments. 
The length of the beam is 0.4 m and the beam used in 
the experiments had square cross-section, 0.01×0.01 
m2. The material properties are: the modulus of 
elasticity of the beam E =2.16×1011 N/m2 and den-
sity ρ =7650 kg/m3. In addition, the cracks were 
modeled by sawing cuts. The set-up of the experiment 
of a simply supported beam with double cracks is 
shown in Fig. 3. One of the hinges is supported the 
bolts with sharp tip. The other hinge is supported 
using the square zig to realize the axially movable end. 
It is evident that both ends are fixed to have no 
translation motion but are free to rotate and nave no 
bending moments. An impact test was used by an 
impact hammer (DYTRAN, series 5801 A), an 
accelerometer (B&K, type 4507) and a dynamic 
signal analyzer (LMS, Cada-x 3.5D).  
 

4. Results and discussion 

In this study, the effects of the double cracks on  
 

 
Fig. 3. Experiment set-up of a simply supported beam with 
the double cracks. 
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natural frequency of a simply supported beam were 
investigated by the comparison between the the-
oretical results and experimental measurements. The 
equation of motion is computed by the forth order 
Runge-Kutta method. We have studied the natural 
frequencies of a simply supported double-cracked 
beam for the first and second modes of vibration. For 
simplicity, the following dimensionless quantities are 
introduced: 

 

1,2 1,2
1,2 1,2

for single crack :   ,    

for double cracks :   ,    

c
c

c
c

x aH
L h

x a
H

L h

ξ

ξ

= =

= =

(19) 

 
First of all, the accuracy of the present numerical 

results needs to be confirmed. Tables 1 and 2 
represent the natural frequency of a simply supported 
beam with a single crack for the first mode and 
second mode of vibration, respectively. In these Tables, 

 
Table 1. Natural frequency of a simply supported beam with a 
crack for the first mode. 

Natural frequency [Hz] Crack 
position 

(
cξ = /cx L ) 

Crack depth 
( H = /a h ) 

T:Theory E:Experiment 

Error(%) 
:|E-T|/E×100

Un-cracked beam 150.59 151.5 0.60 

0.2 
0.1 
0.3 
0.5 

150.48 
149.61 
145.95 

151.2 
151.0 
147.8 

0.48 
0.92 
1.25 

0.3 
0.1 
0.3 
0.5 

150.38 
148.75 
142.16 

150.5 
149.8 
143.8 

0.08 
0.70 
1.14 

0.5 
0.1 
0.3 
0.5 

150.27 
147.81 
138.32 

149.2 
146.8 
139.2 

0.72 
0.69 
0.64 

 
Table 2. Natural frequency of a simply supported beam with a 
crack for the second mode. 

Natural frequency [Hz] Crack 
position 

(
cξ = /cx L ) 

Crack depth 
( H = /a h ) 

T:Theory E:Experiment 

Error(%) 
:|E-T|/E×100

Un-cracked beam 602.37 602.5 0.02 

0.2 
0.1 
0.3 
0.5 

601.18 
590.21 
556.08 

599.8 
588.2 
568.5 

0.22 
0.34 
2.18 

0.3 
0.1 
0.3 
0.5 

601.16 
588.50 
543.42 

604.2 
594.2 
564.5 

0.50 
0.95 
3.73 

0.5 
0.1 
0.3 
0.5 

602.37 
602.37 
602.37 

599.8 
597.8 
593.0 

0.43 
0.76 
1.58 

comparison between theoretical results and experi-
mental measurements is also given. In Table 1, the 
maximum difference between the two results is less 
than 1.25%. It can be found that the theoretical results 
are a good agreement with the experimental measure-
ments. In Table 2, natural frequency of the second 
mode of vibration, the two results are found to be 
almost identical. But, when the crack position is 0.3 
and the crack depth is 0.5, the difference between the 
two results is 3.73 %. Totally, when the crack depth is 
0.5, the difference between the theoretical results and 
experimental measurements is largest.  

Figure 4 shows the ratio of natural frequency of a 
simply supported single cracked beam for the first 
and second modes of vibration. In figures, the axis of 
the ordinates is the frequency ratio, where ω  and 

nω  are the natural frequency of a cracked beam and 
the natural frequency of an un-cracked beam, respect- 
 

 
(a) First mode 

 
(b) Second mode 

Fig. 4. Natural frequency of a simply supported beam accor-
ding to the crack depth ; experiment, 

cξ =0.2, ■; 
cξ =0.3, 

□; 
cξ =0.5 ○. 
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(a) First mode 

 
(b) Second mode 

Fig. 5 Natural frequency of a simply supported beam ac-
cording to the crack position. 
 
ively. These figures show that the theoretical results 
are a good agreement with the experimental mea-
surements. In Fig. 4 (a), when the crack position is 
constant, the natural frequency of a simply su-pported 
beam is inversely proportional to the crack depth. In 
Fig. 4(b), in the case of cξ =0.5 the natural frequency 

ratios of the second mode of vibration are unit due to 
the mode shape of the beam. In addition, the natural 
frequency of a simply supported beam is decreased 
rapidly when the crack depth H is larger than 0.5.  

Figure 5 represents the frequency ratio of a simply 
supported beam according to the crack position. 
When the crack position exists in the center of a 
simply supported beam, the difference of frequency 
ratio of a cracked beam in the two cases of H =0.1 
and H =0.3 is about 1.6%. And the difference of 
frequency ratio of a cracked beam in the two cases of 
H =0.3 and H =0.5 is about 6.3 %.  

The reduction of natural frequency of a cracked  

 
(a) First mode 

 
(b) Second mode 

Fig. 6. Contours of natural frequency of a simply supported 
beam due to the crack. 

 
beam for the first and second modes of vibration is 
shown in Fig. 6. As shown in these figures, the 
reduction of natural frequency of a simply supported 
beam is related to the depth and the position of a 
crack, and the mode shapes. 

Table 3 shows the natural frequency of a simply 
supported beam with the double cracks for the first 
mode of vibration. In addition, comparison between 
theoretical results and experimental measurements is 
also given. In these results, the maximum difference 
between the two results is less than 2.06 %. It can be 
found that that the theoretical results are a good 
agreement with the experimental measurements. 
Table 4 represents the natural frequency of a double-
cracked beam according to the position and depth of 
each crack.  

Figure 7 shows natural frequency of a simply 
supported double-cracked beam according to the 
crack depth and crack position of each crack for the 
first mode. Totally, when the crack positions are 
constant, as the depth of cracks is increased, the natu- 
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Table 3. Natural frequency of a simply supported beam with 
the double cracks for the first mode(

2cξ =0.5, 1H =0.5). 

Natural frequency [Hz] First crack  
position:

1cξ  
Second rack  
depth :

2H  
T:Theory E:Experiment

Error(%) 
:|E-T|/E×100

0.1 
0.1 
0.3 
0.5 

148.96 
146.56 
137.30 

149.5 
146.8 
139.8 

0.36 
0.16 
1.79 

0.3 
0.1 
0.3 
0.5 

141.89 
139.81 
131.72 

142.0 
140.8 
134.5 

0.08 
0.70 
2.06 

 
Table 4. Natural frequency of a simply supported beam with 
the double cracks for the first mode. 

1H ( 1 /a h ) = 0.5 
2H  (

2 /a h ) = 0.5
First crack 
position 

1cξ =
1 /cx L  

Second 
crack 

position 

2cξ =

2 /cx L  2H = 0.1 2H = 0.3 
2H = 0.5 

 

1H = 0.1 1H = 0.3

0.1 
0.2 
0.5 
0.7 

149.16
148.96
149.07

148.31 
146.56 
147.48 

144.71 
137.30 
141.07 

145.92
138.29
142.13

145.69
138.11
141.93

0.3 
0.4 
0.5 
0.7 

141.91
141.89
141.98

140.01 
139.81 
140.63 

132.52 
131.72 
135.11 

139.17
138.16
141.98

145.69
138.11
140.63

0.5 
0.6 
0.7 
0.8 

138.09
138.16
138.23

136.35 
136.89 
137.56 

129.44 
131.72 
134.71 

 

139.08
141.89
145.66

137.12
139.81
143.42

 
ral frequencies of a simply supported double-cracked 
beam are decreased. Specially, when the first crack 
position exists in the center of a simply su-pported 
double-cracked beam, the natural frequencies of a 
double-cracked beam are most sensitive to the crack 
position. 

Figures 8 and 9 show the natural frequency of a 
simply supported double-cracked beam according to 
the crack depth. In this case, the double crack are 
located at 

1cξ = 0.3 and 2cξ = 0.6 from the left-hand 

hinged end of the beam, respectively. In these results, 
we will predict easily the natural frequencies of a 
simply supported double-cracked beam according to 
crack depth. That is, the change in natural frequencies 
can be used to estimate the depth of the cracks. 
Inversely, the change in the depth of the cracks can be 
used to estimate the natural frequency of a simply 
supported double-cracked beam. In figures, the 
change of the natural frequency is plotted versus the 
depth( 2H ) of the second crack for four different values 

 
(a) 1cξ =0.1 

 

 
(b) 1cξ =0.3 

Fig. 7. Natural frequency of a double-cracked beam accord-
ing to the crack depth and crack position for the first mode. 

 

 

Fig. 8. Natural frequency of a double-cracked beam versus 
depth of the first crack ( 1cξ = 0.3, 2cξ = 0.6). 
 
values of the depth(

1H ) of the first crack. Using the 

measured natural frequency of the cracked beam, a 
horizontal line can be drawn. The intersection of this 
line with the (

1H ) curves represents the depth of the  
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Fig. 9. Natural frequency of a double-cracked beam versus 
depth of the second crack( 1cξ = 0.3, 2cξ = 0.6). 

 
(a) 1cξ = 0.3, 2cξ =0.7 

 
(b) 1cξ = 0.5, 2cξ = 0.7 

Fig. 10. Contours of natural frequency of a double-cracked 
beam due to the crack depth for the first mode. 
 
first crack, while the ordinate of the intersection point 
represents the depth of the second crack. In our 
example, we can estimate that the natural frequency 
of a simply supported double-cracked beam is about 
143.78[Hz] when the depths of the crack are 

1H =0.3 
and 2H = 0.4. 

 
Fig. 11 Contours of natural frequency of a double-cracked 
beam due to the crack depth for the second mode ( 1cξ = 0.5, 

2cξ = 0.7) 

 
(a) First mode 

 
(b) Second mode 

Fig. 12. Contours of natural frequency of a double-cracked 
beam due to the crack position (H1= 0.3, H2= 0.3) 

 
Figures 10~12 show the changes of the natural 

frequencies of a simply supported double-cracked 
beam due to the crack positions and the depth of the 
cracks. Figure 10 and Fig. 11 are the first vibration 
mode and second vibration mode, respectively. Figure 
12 represents the contours of natural frequency of a 
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double-cracked beam due to the crack position for 
1 2 0.3H H= = . In these figures, the position of the 

cracks from the left-hand supported end gradually 
moves to the right-hand supported end of the beam 
with increasing of the frequencies of a simply su-
pported beam. When the crack positions are constant, 
the natural frequencies of a simply supported double-
cracked beam are in inverse proportion to the crack 
depth.  
 

5. Conclusions 

In this paper, the influences of the crack depth and 
the crack position were studied on the dynamic 
behavior of a simply supported double-cracked beam 
by the numerical method and the experimental mea-
surements. A simply supported beam is modeled by 
the Euler-Bernoulli beam theory. The equation of 
motion is derived by using Hamilton’s principle. The 
double-cracked beam has been treated as three 
undamaged segments connected by a rotational elas-
tic spring at the each cracked section. The stiffness of 
the spring depends on the crack depth and the 
geometry of the cracked section. The main results of 
this study are summarized as follows: 

The effects of the position and depth of each crack 
on the natural frequency of a simply supported dou-
ble-cracked beam was investigated theoretically and 
experimentally. It was shown that, when the crack 
positions are constant, the natural frequencies of a 
simply supported double-cracked beam are inversely 
proportional to the crack depth and when the first 
crack position exists in the center of a simply su-
pported double-cracked beam, the natural fre-
quencies of a double-cracked beam are most sensitive 
to the crack position.  
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